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Universal ionic valence velocity scaling
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This work combines the usual empirical formula for the effective charge of a beam penetrating a target with
the Bohr charge equilibrium condition. The result is a logarithmic scaling law, which provides the rms valence
velocity and virialized ionization potential for any atomic speciesZ at any charge state 0<Q,Z. Comparisons
with Thomas-Fermi modeling and the Bohr formula for hydrogenic valence velocities are performed.
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I. BACKGROUND

Two principal atomic modeling systems, the Bohr ato
and the Thomas-Fermi model, treat atomic electron distri
tions in two distinct manners each, with different regimes
applicability. A bridge between the two systems can be fou
in an empirical formula that approximates the effecti
charge state of an ion beam penetrating a cold target.
nature of this formula will be investigated here in detail.
particular, combining the effective charge formula with
equilibrium charge condition due to Bohr will produce a ge
eralized modeling scheme for valence electron energetic

As an ion beam is deposited into a target, its constitu
ions can be characterized by an average charge state
likely represents an equilibrium value at each instant of
beam’s journey. The kinetic balance responsible for es
lishing this charge equilibrium was specified by Bohr@1#. He
surmised that a beam’s equilibrium ionicity at each po
during its penetration into a target would be that ionic cha
Q at which the rms valence electron velocityvv(Z,Q)
roughly equals the beam velocityv. While providing insight
into the nature of the atomic energetic balance of an incid
beam, Bohr’sansatzdoes not immediately provide a way t
quantify the beam’s instantaneous charge state.

Apparently distinct from the Bohr condition is the use
empirical formulas that provide the effective charge state o
beam penetrating a cold target. The most common app
tion of such formulas is to provide an effective beam cha
state for energy deposition calculations. In general, a bea
instantaneous effective charge stateQ(v,Z) can be indepen-
dent of the target species and is a function only of the bea
velocity v and atomic numberZ. Owing to the work of
Brown and Moak@2# is a particularly successful empirica
formula for Q(v,Z). It can be written as

Q~v,Z!'ZS 12a expF 2v

Zfac
G D , ~1!

wherea is a parameter near unity andf is a parameter whos
value is near 2/3.

The chief purpose of Eq.~1! is to provide a value for the
incident ionic chargeQ appearing in the Bethe formula fo
beam stopping powerdE/dx @3#. The Bethe formula depend
on the square of this charge@4#
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nbln@Lb#, ~2!

in which nb is the number density of bound electrons in t
target andLb is the Coulomb logarithm. Brown and Moa
selecteda51.034 andf 50.69 for an optimal form of Eq.~1!
for modeling the range of incident ion beams in targets
curious yet unaddressed detail of the fitted parameters is

f

2/3
51.035'a. ~3!

With the substitutionf [2b/3 a useful interpretation of the
term Zfac as the slightly corrected Thomas-Fermi veloc
becomes transparent.

II. VALENCE SCALING

It was observed that the effective chargeQ(v,Z) given by
Eq. ~1! closely represented the actual average ionic charg
the beam@2#. After traversing a target and emerging at
velocity v, an ion beam exhibited an average charge that w
well represented by the effective charge formula. Brown a
Moak noted that this concurrence was ‘‘interesting to o
serve,’’ but no substantial exploration was conducted. S
pose that the effective charge state given by Eq.~1! is indeed
consistent with the equilibrium charge state imposed by
Bohr condition. In other words, the charge state given by
effective charge formula ought to be nearly the same as
charge state at which the characteristic valence velocit
equal to the beam velocity. This connection between the
models, if valid, will produce an interesting result after
simple substitution.

The Bohr charge equilibrium condition can be stated a

v'vv~Z,Q!, ~4!

where vv(Z,Q) is the rms valence velocity of an ion o
atomic numberZ at a charge stateQ. Exploiting the putative
consistency between the Bohr model and the empirical fi
Brown and Moak, this substitution can be applied to Eq.~1!
producing

Q'ZS 12a expF2vv~Z,Q!

Z2b/3ac
G D . ~5!
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Solving for vv(Z,Q) gives

vv~Z,Q!'Z2b/3ac lnF aZ

Z2QG . ~6!

This formula contains the bold implication of providing th
rms valence electron velocity of any speciesZ at a charge
stateQ. The empirical fit for a beam’s effective charge sta
is seen implicitly to contain generalized information abo
the scaling of ionic valence levels. Given the universality
the original formula in Eq.~1!, the inverted form should also
enjoy application to a wide range of atomic species a
charge states. Furthermore, Eq.~6! can be used in principle
to form a virialized ionization potentialI (Z,Q) of any spe-
cies at any given charge state. In the nonrelativistic limit,
ionization potential can be taken from the valence rms
locity vv(Z,Q) by

I ~Z,Q!5
1

2
mevv

2~Z,Q!, ~7!

or relativistically by

I ~Z,Q!5~12s!mec
2, ~8!

with s2512@vv(Z,Q)/c#2 and me being the electron mas
@5#. The explicit form for the nonrelativistic valence ioniza
tion potential in Eq.~7! is

I ~Z,Q!'Z4b/3RyS lnF aZ

Z2QG D 2

, ~9!

with Ry[ 1
2 mea

2c2.

A. Calculations with the scaling

The information provided by the general yet surprising
compact forms of Eqs.~6!–~9! will be applied to severa
cases to investigate the value of these alleged relations
In the following calculations, the parametera will be set to
1.034, the value chosen by Brown and Moak. The value ob
will be set to unity throughout, maintaining the presence
the unadjusted Thomas-Fermi velocity in the equations. F
ure 1 displays the rms valence electron velocities for le
and silver for each of their respective charge states extra
from the measured ionization potentials. Also shown are
valence velocities calculated from Eq.~6!. Aside from shell
effects, the scaling of the measured valence velocities w
charge state is represented with impressive reliability.

Figure 2 displays the measured ionization potentials
lead for all charge states along with the ionization potent
calculated with the logarithmic scaling. Across appro
mately four orders of magnitude of energies, Eqs.~6!–~9!
well reproduce the measured ionization potentials, in b
relativistic and nonrelativistic regimes. Note the importan
of thea parameter in Fig. 2. At low charge states the value
a influences the logarithmic numerator and noticeably
creases the calculated ionization potential compared to
culations witha51.
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t
f

d

e
-

ps.

f
-
d
ed
e

th

f
ls
-

h
e
f
-
l-

III. COMPARISON TO THOMAS-FERMI MODELS

The Thomas-Fermi~TF! treatment of atomic and ionic
energetics can be used to model the scaling of ioniza
potential with charge state. The results given by the
model will be compared with the logarithmic scaling intr
duced here. The total TF binding energyETF of the electrons
in a neutral species scales asZ7/3 @6#. For an ionized species
this scaling is adjusted by a terme(Z,N), which is a function
of the degree of ionization

ETF~Z,N!}Z7/3e~Z,N!, ~10!

where N is the number of bound electrons and the cha
state Q of the ion is Z2N @7#. The ionization potential
I (Z,Q) of an ionic species can be determined from to
electronic binding energies by

FIG. 1. Calculated and measured rms valence velocities for
charge states of silver and lead.

FIG. 2. Calculated and measured ionization potentials for
charge states of lead.
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I ~Z,Q!5ETF~Z,N!2ETF~Z,N21!. ~11!

In practice, the scaling functione(Z,N) is not able to be
stated analytically for the entire range of 0,N<Z. Analyti-
cal approximations are available for the two casesN being
very close toZ andN being near unity. Following Ref.@7#,
for N not much less thanZ ~ions of low charge stateQ
!Z), the total binding energy scales as

ETF~Z,N!'0.769Z7/320.0473~Z2N!7/3, ~12!

in which the energy is given in atomic units. ForN!Z
~highly charged ions! the TF binding energy is approximate
by

ETF~Z,N!'1.14Z2S 3

2
ND 1/3

20.485ZN4/3. ~13!

By employing these expressions in Eq.~11! the ionization
potential can be approximated for an arbitrarily charged s
cies. Note that Eq.~12! will produce an ionization potential
which is a function only ofQ5Z2N since the leading term
0.769Z7/3 will cancel in application of Eq.~11!. Dependency
on Z can be added for a better approximation by incorpo
ing terms that are expansions ofq[12N/Z ~see Ref.@7# for
complete details!.

Figure 3 displays the ionization potentials of gold at
charge states calculated with the Thomas-Fermi scaling.
comparison are shown the measured values and the re
obtained using Eqs.~6!–~9!. For high charge statesN!Z the
TF model’s scaling reproduces well the empirical trends. I
curious to note that the TF model follows a different traje
tory along the shell structure trends than does the logarith
scaling, yet both capture important characteristic featu
The functionalities of the two models in this regime a
clearly distinct, as expected from the difference between
~13! and the virialized Eq.~6!. At low charge states the ef
fectiveness of the TF model suffers from the absence of

FIG. 3. Calculated and measured ionization potentials for
charge states of gold along with Thomas-Fermi modeling.
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propriate functional dependence on atomic numberZ. The
logarithmic scaling exhibits appropriateZ dependence and
performs much more effectively in this regime. However,
is evident from Fig. 3, the functional variation of the tw
models with charge stateQ are very similar. This can be
understood by examining the associated formulas. Equa
~12! varies roughly as the 7/3 power ofQ. On the other hand
the valence velocity in Eq.~6! can be approximated forQ
!Z by

vv~Z,Q!'Z2/3acS Z

Z2Q
21D , ~14!

~with a5b51 for clarity!. With continued reduction this
gives

vv~Z,Q!'
Qac

Z1/3
. ~15!

Thus, in the low-ionicity limit, the logarithmic formula give
a valence velocity that scales linearly withQ and thus a
virialized ionization potential that scales as the square
charge state, in rough agreement with the 7/3 power sca
of the TF model in this regime.

IV. HYDROGENIC CONSISTENCY AND A LOGARITHMIC
RELATIONSHIP

Consider the special case of a hydrogenic ion withQ
5Z21. As demonstrated in Fig. 1, Eq.~6! can be used to
model the hydrogenic electron’s rms velocity~see the veloci-
ties calculated forQ546 for silver andQ581 for lead!. The
generalized formula for the hydrogenic rms valence veloc
vh according to the logarithmic scaling is

vh5vv~Z,Q5Z21!'Z2b/3ac ln@aZ#. ~16!

But, a hydrogenic orbital system also should be well d
scribed by the Bohr-atom scaling in which the orbital velo
ity vB varies linearly withZ,

vB'Zac. ~17!

Are these two modeling systems consistent? If this conn
tion between the logarithmic model and the Bohr ato
should be valid, then an interesting mathematical relati
ship will result. Equating the hydrogenic rms valence velo
ties obtained by the two different methods gives, witha5b
51 for clarity,

Z2/3ac ln@Z#'Zac, ~18!

which is to say

ln@Z#'Z1/3. ~19!

Thus, an implication of hydrogenic consistency is an a
proximation to the logarithmic function. This approximatio
to the natural log is indeed good forZ in the range of the
atomic numbers greater than a few.
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V. INTERPRETATIONS AND DIRECTIONS

These previously unexplored applications of an inver
effective charge formula are perhaps most useful in
atomic scaling physics that they imply. A clear justificatio
of the success of this logarithmic scaling from first princip
is not apparent. The analyses that generated the form of
~1! treated the functional development only empirical
However, the model’s consistency with Bohr scaling, lo
ionicity TF modeling, and measured valence energies in
cate that a meaningful physical representation is being
ticulated.

From the consistency demonstrated here, we may
draw some conclusions about the physics of beam ch
evolution. It appears that the Bohr equilibrium condition a
the empirical formula of Brown and Moak are rough
equivalent statements of average beam charge state.
joins two paradigms of beam charge evolution that have g
erally been treated as distinct. The success of Eq.~6! rein-
forces the notion that the charge state provided by Eq.~1!
represents an actual ionic charge and not just an effec
06450
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charge parameter. This provides a more physical explana
of the success of the formula of Brown and Moak has, wh
been viewed simply as a fit to data.

At least one term in the empirical fit of Brown and Moa
can now be interpreted not just as a fitting parameter bu
representative of the physics of atomic electron distributio
The role of the parametera accounts for the fact that th
valence electrons in a neutral atom have a nonzero rms
locity. If the factora were simply unity, Eq.~9! would give a
unit argument to the logarithm and thus a vanishing ioni
tion potential for neutral atoms (Q50). Settinga to a value
slightly greater than 1 corrects this trend. For higher cha
statesQ, the factora becomes insignificant.
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